Clone
1
DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
elisevalenzuel edited this page 2025-02-06 08:12:30 -06:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and gratisafhalen.be Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, in addition to the distilled versions ranging from 1.5 to 70 billion criteria to construct, experiment, bytes-the-dust.com and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the models as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) established by DeepSeek AI that utilizes support finding out to enhance thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential differentiating feature is its reinforcement knowing (RL) step, which was used to improve the design's actions beyond the standard pre-training and tweak process. By incorporating RL, DeepSeek-R1 can adjust better to user feedback and objectives, eventually improving both importance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, larsaluarna.se meaning it's geared up to break down intricate queries and reason through them in a detailed way. This assisted reasoning procedure allows the model to produce more accurate, transparent, and engel-und-waisen.de detailed answers. This design integrates RL-based fine-tuning with CoT abilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its extensive capabilities DeepSeek-R1 has actually recorded the industry's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, rational thinking and information analysis jobs.

DeepSeek-R1 uses a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling efficient inference by routing inquiries to the most relevant specialist "clusters." This approach allows the design to specialize in different issue domains while maintaining overall performance. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will use an ml.p5e.48 xlarge instance to deploy the model. ml.p5e.48 xlarge includes 8 Nvidia H200 GPUs providing 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more efficient models to simulate the behavior and thinking patterns of the larger DeepSeek-R1 model, using it as an instructor design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend releasing this model with guardrails in place. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate models against essential safety requirements. At the time of writing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can create numerous guardrails tailored to different usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 model, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, select Amazon SageMaker, and validate you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation increase, create a limitation increase request and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, prevent hazardous material, and evaluate designs against key security requirements. You can implement security measures for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This enables you to use guardrails to assess user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After getting the design's output, another guardrail check is applied. If the output passes this last check, it's returned as the outcome. However, if either the input or output is stepped in by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following areas show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized structure models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of writing this post, you can utilize the InvokeModel API to conjure up the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a provider and pick the DeepSeek-R1 model.

The model detail page provides essential details about the model's capabilities, rates structure, and implementation guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for combination. The design supports different text generation tasks, consisting of content production, code generation, and concern answering, using its reinforcement finding out optimization and CoT reasoning abilities. The page also includes deployment options and licensing details to help you start with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, pick Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, enter a variety of instances (between 1-100). 6. For example type, pick your instance type. For optimum efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is suggested. Optionally, you can configure innovative security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function approvals, and file encryption settings. For many use cases, the default settings will work well. However, for production releases, you may want to review these settings to align with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the design.

When the deployment is total, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in playground to access an interactive user interface where you can explore different prompts and adjust model parameters like temperature and maximum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for optimum results. For example, content for reasoning.

This is an outstanding method to check out the model's thinking and text generation abilities before integrating it into your applications. The playground offers instant feedback, helping you understand how the design responds to different inputs and letting you fine-tune your triggers for optimum outcomes.

You can rapidly evaluate the model in the playground through the UI. However, systemcheck-wiki.de to conjure up the deployed model programmatically with any APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have developed the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime customer, configures reasoning criteria, and sends a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides 2 convenient techniques: utilizing the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both approaches to assist you pick the approach that best suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model web browser shows available models, with details like the company name and model abilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 design card. Each model card shows crucial details, including:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if applicable), indicating that this design can be registered with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to invoke the model

    5. Choose the design card to view the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab consists of crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage guidelines

    Before you release the design, it's recommended to review the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, utilize the immediately created name or develop a customized one.
  1. For example type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the variety of instances (default: 1). Selecting appropriate circumstances types and counts is important for cost and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time reasoning is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this design, we strongly advise adhering to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the model.

    The deployment procedure can take numerous minutes to finish.

    When implementation is total, your endpoint status will change to InService. At this moment, the model is prepared to accept inference requests through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the release is total, you can conjure up the design using a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get started with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to install the SageMaker Python SDK and make certain you have the needed AWS approvals and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for pipewiki.org reasoning programmatically. The code for releasing the model is supplied in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To prevent undesirable charges, complete the steps in this section to clean up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you deployed the design utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments.
  5. In the Managed implementations area, locate the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, pick Delete.
  7. Verify the endpoint details to make certain you're erasing the proper implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you released will sustain costs if you leave it running. Use the following code to delete the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI business build ingenious services using AWS services and accelerated calculate. Currently, he is focused on establishing techniques for fine-tuning and optimizing the reasoning performance of big language models. In his leisure time, Vivek takes pleasure in treking, watching movies, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and strategic collaborations for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing solutions that help customers accelerate their AI journey and unlock company worth.